H=-16t^2+153t+90

Simple and best practice solution for H=-16t^2+153t+90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+153t+90 equation:



=-16H^2+153H+90
We move all terms to the left:
-(-16H^2+153H+90)=0
We get rid of parentheses
16H^2-153H-90=0
a = 16; b = -153; c = -90;
Δ = b2-4ac
Δ = -1532-4·16·(-90)
Δ = 29169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{29169}=\sqrt{9*3241}=\sqrt{9}*\sqrt{3241}=3\sqrt{3241}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-153)-3\sqrt{3241}}{2*16}=\frac{153-3\sqrt{3241}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-153)+3\sqrt{3241}}{2*16}=\frac{153+3\sqrt{3241}}{32} $

See similar equations:

| x-6=8x+15 | | -2(x-6)=32 | | -9n=-7n−6 | | 1+76=x | | 15=4k-k | | 3x/4+1/3=1 | | ∣x−7∣=2x+3 | | 2z(z-9)=0 | | -9=4r-r | | 3(x+2+4(2x+1)=6x+20 | | 2/9=14n | | 7+7+0+9+9+9-0-9-46-2890+56+689+20-98+42X-3/3x=45-x-67-8X | | -3g=-4g−7 | | 0=-4.9t^2+30t | | 0=-r-2r | | -9+7m=6m−1 | | 4(-3+2x)=28 | | -6=c-4c | | 1/x+7/5x=x+2/x | | 6=2g+4g | | A•t^2+Y•t=-Z | | -8j=6−6j | | 18=z+8z | | Z^2-11z+39=0 | | 2m=m−7 | | 4h=5+5h | | 4=10q-9q | | 12x-(8x-4)=44 | | 18=8y+y | | 7-8+3t=20 | | X+30=4x+10 | | 3(2x+8)=56 |

Equations solver categories